
Audio-Based Classification and Geographic Regression of Austrian Dialects

Lorenz Gutscher1,2, Michael Pucher1,2

1Signal Processing and Speech Communication Laboratory, Graz University of Technology, Austria
2Austrian Research Institute for Artificial Intelligence, Vienna, Austria

lorenz.gutscher@ofai.at, michael.pucher@ofai.at

Abstract
Dialect classification remains challenging due to regional vari-
ability and limited dialect-specific datasets. This study ad-
dresses these challenges by leveraging a novel dataset of 304
speakers from 108 locations across Austria for automatic clas-
sification of Austrian dialects. To minimize speaker-specific bi-
ases and enhance dialectal features, speaker augmentation tech-
niques are applied. Classification is conducted at three levels:
location, dialect group, and federal state. Additionally, a regres-
sion task predicts the speakers’ geographic coordinates, with
the wav2vec 2.0 model architecture achieving an average test-
set distance error of 66.7 kilometers. This work represents a
unique approach to fine-grained dialect classification and geo-
graphic location prediction for Austria. Finally, model explain-
ability is explored using Integrated Gradients (IG), identifying
the most relevant speech segments for classification within each
dialect group.
Index Terms: Dialect classification, Austrian dialects, explain-
able AI, data augmentation

1. Introduction
The two primary dialect families spoken in Austria are Ale-
mannic (Alemannisch) and Bavarian (Bairisch). A more fine-
grained classification further divides these into six subgroups:
Alemannic (Alem.), Bavarian-Alemannic (Bav.-Alem.), South
Bavarian (S. Bav.), South-/Central Bavarian (S./C. Bav.), West-
Central Bavarian (W.-C. Bav.), and Central Bavarian (C. Bav.),
as illustrated in Figure 1. These dialects differ in phonetics, vo-
cabulary, and grammar, reflecting the linguistic diversity shaped
by historical and geographical influences [1, 2]. In addition to
dialects, Standard Austrian German is spoken all over Austria
and can be seen as a variety situated between the C. Bav. and
Standard German spoken in Northern Germany [3].

Dialect classification enhances speech technology systems,
such as Automatic Speech Recognition (ASR), by incorporating
dialect embeddings – high-dimensional feature representations
extracted from audio – shown to improve word error rate [4].
This is especially relevant for Austrian dialects, where dialec-
tal variation in conversational spoken input is a challenge for
state-of-the-art speech recognition architectures [5]. Key chal-
lenges include dialectal variation within dialect groups and tran-
sitional regions, where dialect boundaries are fluid and overlap-
ping. While dialect classification can also be performed at the
lexical level [6], this work focuses on phonetic characteristics.

Dialect groups and federal states can be classified either di-
rectly or by training on speakers’ places of origin, enabling eval-
uation at the location level and comparison with direct classifi-
cation models. If locations are used as geographic coordinates,
the classification task can be reformulated as a regression task

predicting latitude and longitude.
To gain insight into model decisions, we apply Integrated

Gradients (IG) to identify speech segments that contribute most
to the classification. This post hoc explainability offers valuable
information for Austrian dialect speakers and linguists, helping
to uncover the linguistic cues the model relies on. By making
Artificial Intelligence (AI) decisions more transparent, explain-
ability can increase trust and acceptance of such systems [7].

This paper makes the following contributions:
• Classification of location, dialect group, and federal state
• Predicting geographic coordinates in a regression task
• Evaluation of speaker augmentation
• Explainability using attribution analysis

2. Related Work
Most prior work on dialect classification from audio has fo-
cused on accent classification, predominantly for English, as
demonstrated in [8] and [9]. In contrast, fine-grained dialect
classification – particularly for Austrian dialects – has received
comparatively less attention. While classification of German
dialect families has been addressed in [4] and [10], Austrian
data in these works is grouped coarsely into Alemannic and
Austrian-Bavarian, limiting specificity. Another study focuses
exclusively on Austrian dialects but limits its scope to the two
most linguistically distinct federal states, Vienna (Vie) and Vo-
rarlberg (Vbg), achieving an accuracy of 84.2% [11]. Beyond
classification, statistical analyses of Austrian dialects have been
conducted, examining phonological variable patterns derived
from individual tokens and isolated linguistic features [12]. Ge-
ographic regression approaches, such as [13], have also been
applied to dialectal variation, utilizing random forests to model
German phone classes.

In the field of explainability, Layer-wise Relevance Prop-
agation has been used to analyze feature importance on
raw waveforms in gender and digit classification [14]. In
[15], explainable AI techniques are applied to speech-based
Alzheimer’s screening. A Non-negative Matrix Factorization
method is proposed in [16] to enhance interpretability in scene
classification, which, though originally applied to audio events,
also holds potential for dialect classification. Source separation
methods such as the one proposed in [17] require prior source
knowledge, limiting their use in dialect classification.

3. Methodology
This section presents the dataset – comprising dialect speech
recordings from selected Austrian locations – along with the
data augmentation techniques, modeling approaches, and ex-
plainability methods applied in this study. Classification and



Figure 1: Map of Austria showing recording locations and their
associated dialect groups. Adapted from [12] and [22].

regression models use ECAPA-TDNN [18] and wav2vec 2.0-
based architectures [19, 20] to predict dialect group, federal
state, and location classes, as well as geographic coordinates
via regression. Additionally, IGs [21] are employed to provide
explainability of the model and its decision-making process,
proposing two methods: (1) Identifying phones at attribution
peaks; (2) Measuring kurtosis to identify utterances with dis-
tinctive phones.

3.1. Dataset

In the case of Austria, corpora like Common Voice [23] lack
precise dialect-specific metadata, which is essential for fine-
grained dialect classification. Therefore, the corpus used in this
study is derived from the following sources: (1) A corpus col-
lected as part of the research program German in Austria: Vari-
ation and Change of Dialect Varieties in Austria (in Real and
Apparent Time)1 which consists of recordings from 106 loca-
tions. (2) Two new locations, Vie [24] and Innervillgraten, are
added, and four speakers from Bad Goisern (which is also listed
in (1)) are included [25]. All data are downsampled to 16 kHz.
The combined dataset comprises 304 speakers from 108 regions
in Austria, selected based on criteria including low formal ed-
ucational attainment, engagement in manual occupations (e.g.,
agriculture), and long-term residence in the same area. It in-
cludes 153 elderly speakers (65+ years: 69 female, 84 male)
and 151 young speakers (18–35 years: 66 female, 85 male).
For each region, there are at least two and at most four individ-
uals. The recordings consist of dialogues between the investi-
gator and the speaker, with the investigator asking a fixed set
of questions. These include open-ended questions, translation
tasks, and structured prompts aimed at eliciting target phones
for later analysis. Using automatic speaker diarization [26], the
dataset is processed to remove the investigator, ensuring that
only the dialect speakers are present in the data. Long utter-
ances are segmented into 5-second chunks, and the minimum
duration of an utterance is set to one second. This results in
a dataset with an average of 612 utterances per speaker and a
mean duration of 2.02 seconds per utterance. The dataset is
imbalanced across Austria’s nine federal states, with the num-
ber of speakers ranging from three speakers in Vie to 64 in Tyrol
(Tyr). The distribution across the other states is as follows: Bur-
genland (Bgl, 14), Carinthia (Car, 22), Lower Austria (L. Aut,
48), Upper Austria (U. Aut, 49), Salzburg (Sbg, 38), Styria (Sty,
42), and Vbg (24). This imbalance is also reflected in the num-

1https://www.dioe.at/projekte/task-cluster-b-variation/pp02

ber of utterances, with Vie having the fewest (1,506) and Tyr
the most (40,098). Similarly, dialect groups also exhibit an im-
balance in speaker and utterance counts, as shown in Table 1.2

Table 1: Number of speakers and utterances per dialect group

Dialect group Speakers Utterances

Alemannic 28 15,884
Bavarian-Alemannic 24 16,141
South Bavarian 48 28,967
South-/Central Bavarian 102 60,468
West-Central Bavarian 28 17,847
Central Bavarian 74 46,804

3.2. Data augmentation

Data augmentation is widely used in speech tasks to improve
robustness, especially when training data lacks sufficient vari-
ability [27, 28]. Large foundation models no longer require
data augmentation [29]; however, to achieve dialect robustness
with limited resources, it remains an important technique. Each
speaker’s recordings are converted into 50 voice variants using
reference speakers, while preserving dialectal features, as pro-
posed in [30], ensuring high-quality recordings without requir-
ing transcriptions. Reference speakers are manually selected
from the Common Voice dataset, specifically Standard Aus-
trian German speakers with perceptually clean recordings (25
female, 25 male). The voice-converted samples aim to match
the source dialect while preserving dialect-specific features,
though subtle pronunciation changes may still occur, slightly
altering the original dialect. By standardizing speaker charac-
teristics (timbre) across dialects through voice conversion, the
model is encouraged to focus on dialect- or language-specific
attributes rather than speaker-specific attributes. Additionally,
added noise and speed perturbations (0.95, 1.05) are tested for
their ability to improve accuracy by increasing speaker diver-
sity, though they may affect subtle dialectal cues due to pitch
shifts.

3.3. Classification and regression task

For model training, ECAPA-TDNN [18], a speaker verifica-
tion model designed for robust feature extraction from speech,
is employed and serves as a baseline. While originally de-
veloped for speaker recognition, it can also be fine-tuned for
tasks such as dialect classification due to its ability to capture
speaker-independent features. Additionally, the self-supervised
wav2vec 2.0 architecture, a transformer-based model, is used.
Wav2vec 2.0 has demonstrated strong performance in learning
speech representations for ASR, leading to the development of
XLSR-53 (hereafter referred to as XLSR) [19], which has been
fine-tuned on multilingual speech data to enhance its effective-
ness for tasks like ASR and language classification. The Mas-
sively Multilingual Speech (MMS) model [20] is based on the
wav2vec 2.0 architecture and trained on a significantly larger
dataset spanning over 4,000 languages. A fine-tuned MMS vari-
ant (MMS-LID 256, further referenced as MMS-LID) for lan-

2Once the raw dataset is published by the project group, the pro-
cessed dataset (with separated/augmented speakers) is expected to be
released and could serve as a valuable resource for spoken Austrian di-
alects.



guage identification covering 256 languages – including Ger-
man – is selected for this study. This choice ensures coverage
of languages potentially related to Austrian dialects while main-
taining focus on diverse linguistic representations. Our imple-
mentation builds upon [9]3. To obtain a single vector represen-
tation of dialect embeddings per utterance, all models employ
a StatPooling() layer, as described in [9]. For classifica-
tion tasks, the negative log-likelihood loss is used, while mean
squared error loss is used for regression.

Despite the expected low accuracy due to the limited num-
ber of speakers per location, classification at the location level
enables evaluation at the dialect group and state levels. How-
ever, such classification does not explicitly capture dialect re-
lationships. To address this, locations can be converted to geo-
graphic coordinates, reformulating the task as a regression prob-
lem that predicts geographic latitude and longitude. It should
be noted that strict dialect boundaries may not be accurately
captured in a regression approach, as regression inherently re-
lies on interpolation and does not account for discrete linguistic
borders. Furthermore, the regression model cannot capture a
mixture of dialect features present in the test data, i.e., from a
speaker that has acquired different dialect competencies. For
such a scenario, regression and classification models need to be
combined.

3.4. Explainability

To gain a deeper understanding of the model’s classification cri-
teria, a post-hoc analysis is conducted to assess the IG of the au-
dio. This is achieved using the method from the Captum pack-
age [31]. The primary objective of this explainability approach
is to identify the most relevant time intervals and phones in the
audio that contribute to the model’s classification decisions. At-
tributions are examined at different stages of the model, includ-
ing the raw waveform, extracted features, and deeper layers.
The tests demonstrated that the attributions derived from the
raw waveform provided the most promising results for the task
at hand. While this method identifies regions with the high-
est attribution, it may not fully capture intricate temporal pat-
terns. The workflow for the explainability analysis is as follows:
IGs are computed using 50 steps, with a baseline set to zeros.
The absolute values of the attributions are smoothed using a
Savitzky-Golay filter [32] (window size = 511, polynomial or-
der = 3), and the peaks are identified with a minimum time dis-
tance of 0.2 seconds. The timestamp of the peak is used to find
the corresponding phone in the audio. The phone transcriptions
are extracted using a multilingual model4 [33] with German se-
lected as the target language. Although this model is primar-
ily trained on Standard German, it provides a rough estimate
of which phones are most prominent at the peaks. Additionally,
kurtosis is used to quantify IG signal spikiness, enabling tests of
whether peaks are higher in prompts targeting specific phones.

4. Results
This section presents the performance evaluation of all trained
models across different prediction tasks, beginning with model
naming conventions and training details, followed by results
from Table 2, and findings on model explainability. Models are
labeled by prediction task: loc (location classification), grp
(dialect group classification), state (federal state classification),
and coord (coordinate regression). The suffix a indicates mod-

3https://github.com/JuanPZuluaga/accent-recog-slt2022
4https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft

Table 2: Model performance across different models (fold 1); in
case of “ coord” and “ loc” models, dialect group (Group) and
federal state (State) are derived from location (Loc.) results

Distance Accuracy (%)

Model (km) Loc. Group State

mms coord a 66.7 10.8 66.3 55.1
mms coord 69.5 10.1 63.7 56.5
mms loc 111.7 10.8 50.8 44.9
xlsr coord 77.8 4.4 51.7 51.2
xlsr loc 107.9 10.7 52.1 46.2
xlsr loc nospkaug 139.3 6.5 32.3 23.8
ecapa coord 119.9 2.4 38.6 30.7
ecapa loc 115.9 8.3 48.4 41.0
ecapa loc nospkaug 153.3 4.4 31.5 24.3

Trained directly on dialect group or federal state

mms grp / mms state - - 65.9 60.1
xlsr grp / xlsr state - - 71.3 64.3
xlsr grp a / xlsr state a - - 72.7 64.0

els trained with added noise and spectral augmentation. Mod-
els based on ECAPA-TDNN, MMS-LID, and XLSR are de-
noted by the prefixes ecapa, mms, and xlsr, respectively. Mod-
els xlsr loc nospkaug and ecapa loc nospkaug exclude speaker
augmentation, which is applied in all others. Training stops af-
ter 25 epochs as the validation error plateaus, indicating dimin-
ishing returns. Training time per epoch ranges from five min-
utes for ECAPA-TDNN (≈ 21 million parameters) to 45 min-
utes for XLSR (≈ 315 million parameters) and two hours for
MMS-LID (≈ 968 million parameters) on an RTX 4090 GPU.
The dataset employs 10-fold cross-validation with each test fold
including all six dialect groups, maximizing state coverage, and
restricting to one user per location. Each fold is split approxi-
mately into 80% training, 10% validation, and 10% testing. In
the test set, no speaker augmentation is applied, and the mini-
mum utterance duration is set to two seconds. Due to resource
constraints, only the model mms coord a is evaluated with full
10-fold cross-validation; all other models are evaluated on the
first fold only.

4.1. Classification and regression results

A model classifying by random chance, representing a uniform
selection among all locations, achieves an accuracy of 1

108
≈

0.93%. All models perform above this level. The geographic
center of all locations in the dataset is calculated as 47.5672°
latitude and 13.5636° longitude, with an average distance er-
ror of 146.41 km to all locations. Only ECAPA-TDNN without
speaker augmentation performs worse than random in terms of
distance error (153.3 km). Speaker augmentation leads to statis-
tically significant improvements of +4.2% in location accuracy
for the XLSR model (xlsr loc vs. xlsr loc nospkaug, Wilcoxon
signed-rank test, p < 10−35) and +3.9% for the ECAPA model
(ecapa loc vs. ecapa loc nospkaug, p < 10−25).

Predicting coordinates in a regression task reduces the aver-
age distance error for all models except ECAPA-TDNN (which
exhibits the highest error). Mean prediction error is reduced
by 30.1 km with the XLSR model and by 42.2 km with the
MMS-LID model, compared to classification on the location
level. The best-predicted location, Innervillgraten (Tyr), has a
1.7 km average distance error, while Prellenkirchen (L. Aut)



Figure 2: Confusion matrix of dialect groups (xlsr grp a). Ac-
curacies are normalized per row.

Figure 3: Embeddings of dialect groups (xlsr grp a) projected
into two-dimensional space using UMAP.

has the highest at 152.4 km. A 10-fold cross-validation of the
MMS-LID model with regression and spectral augmentation
(mms coord a) yields a mean distance error of 65.3 km with
accuracies of 9.4% at the location level, 65.0% at the dialect
group level, and 59.4% at the state level, indicating fold one
represents overall performance.
Figure 2 depicts the dialect group confusion matrix: S./C. Bav.
has the highest accuracy (86%), followed by S. Bav. (83%).
While Alem. is often confused with Bav.-Alem. (54%), W.-
C. Bav. is sometimes misclassified as C. Bav. (32%) or S./C.
Bav. (28%). Confusions mainly occur between neighboring
groups; the geographically most distant groups, Alem. and C.
Bav., are rarely confused (≤ 1%). Trained directly on group la-
bels, the best performance is achieved by the xlsr grp a model
(72.7%) trained with spectral augmentation, which improves
accuracy by 1.4% over xlsr grp (71.3%, p < 0.005). The
mms grp model achieves an accuracy of 65.9% and performs
significantly worse than both xlsr grp (-5.4%, p < 10−20) and
xlsr grp a (-6.8%, p < 10−33).
Figure 3 displays the embeddings of the dialect groups, reveal-
ing that geographically adjacent dialect groups are also clus-
tered closely in the embedding space. Accuracies for federal
state classification are depicted in Table 3. The lower accu-
racies at the state level, compared to the dialect group level,
are likely because of the coexistence of multiple dialect groups
within individual states. Tyr demonstrates the highest perfor-
mance, while Bgl has the lowest due to limited data, small geo-
graphic size, multiple bordering states, and the presence of two
dialect groups. Its location – bordering both L. Aut and Car –
likely causes confusion with these states (26% and 46%, respec-

Table 3: Classification accuracy by federal states (xlsr state)

Bgl Car L. Aut U. Aut Sbg Sty Tyr Vbg Vie
12% 76% 74% 62% 51% 51% 96% 69% 65%

tively). Sbg is most often confused with U. Aut (26%), possibly
because one test sample lies near this border. Vie has the fewest
data points among all federal states and is frequently misclas-
sified as U. Aut (34%), despite being entirely surrounded by L.
Aut. Limitations of this work are the absence of data from capi-
tal cities (except Vie) and the bias toward specific demographic
groups, which might limit the generalizability to other social or
professional groups.

4.2. Explainability results

Figure 4 illustrates the most frequently occurring attribution
peaks, with phones such as [n] (780), [o] (603), [i] (520),
and [@] (425) being the most prominent. The realization of
[@] varies considerably across dialects, making it a key feature
for phonetic analysis and an important cue for model classifi-
cation. The diphthong [ai] has a greater importance in S./C.
Bav. than in other dialects. Furthermore, the specific impor-
tance of the phoneme /r/ in classifying the Alem. (and Bav.-
Alem.) group could be explained by its realization in this
dialect [34]. Knowing the timestamps of highest attribution
peaks enables extraction and playback of trimmed audio seg-
ments around those peaks. Since certain questions elicit di-
alectal phones, the higher average kurtosis in the correspond-
ing utterances (158.7 vs. 149.0 for all other questions) supports
the dialectological validity of IG-based explainability, indicat-
ing that more pronounced attribution peaks occur when specific
phones are present.

Figure 4: Top 10 phones of each dialect group, normalized by
their frequency of occurence within each dialect group.

5. Conclusion
This study compares dialect classification with geographic co-
ordinate prediction, demonstrating that the latter reduces the
average distance error. It provides a detailed evaluation of di-
alect identification solely from audio, leveraging state-of-the-art
models such as XLSR and MMS-LID. While XLSR performs
best when directly trained on dialect group labels (72.7% accu-
racy), MMS-LID achieves the lowest distance error (66.7 km)
in the regression task. Additionally, attribution analysis on the
raw waveform highlights the most influential phonetic features
for dialect categorization. Future research could integrate addi-
tional datasets to test the models on unseen locations, but espe-
cially to enhance granularity and further improve classification
accuracy.
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