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Abstract—In this paper, we evaluate the vulnerability of
speaker verification (SV) systems to synthetic speech. The SV
systems are based on either the Gaussian Mixture Model-
Universal Background Model (GMM-UBM) or Support Vector
Machine (SVM) using Gaussian supervectors. We use a Hidden
Markov Model (HMM)-based text-to-speech (TTS) synthesizer,
which can synthesize speech for a target speaker using small
amounts of training data through model adaptation of an average
voice or background model. Although the SV systems have a
very low equal error rate (EER), when tested with synthetic
speech generated from speaker models derived from the Wall-
Street Journal (WSJ) speech corpus, over 91% of the matched
claims are accepted. This result suggests a vulnerability in SV
systems and thus a need to accurately detect synthetic speech.
We propose a new feature based on relative phase shift (RPS),
demonstrate reliable detection of synthetic speech, and show how
this classifier can be used to improve security of SV systems.

Index Terms—speaker recognition, speech synthesis, security

I. INTRODUCTION

THE objective in speaker verification (SV) is to accept or
reject a claim of identity based on a voice sample [1].

Many investigations on the imposture problem as related to SV
have been reported over the years as well as methods to prevent
such impostures. The simplest imposture is playback of a voice
recording for a targetted speaker and the well-known solution
is a text-prompted approach [2]. In addition, the vulnerability
of SV to voice mimicking by humans has also been examined
in [3], [4]. On the other hand, advanced speech technologies
present new problems for SV systems including imposture
using speech manipulation of a recorded voice via analysis-by-
resynthesis methods [5]–[7], voice conversion of the recorded
voice [8]–[11], and diphone speech synthesis methods [7].

The use of synthesized speech potentially poses two related
problems for SV systems. The first problem is confirmation
of an acquired speech signal as having originated from a
particular individual. In this case, the speech signal might be
incorrectly confirmed as having originated from an individual
when in fact the speech signal is synthetic. The second
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problem is in remote or on-line authentication where voice
is used. In this case, a synthesized speech signal could be
used to wrongly gain access to person’s account and text-
prompting would not present a problem for a text-to-speech
(TTS) system. In both of these problems, the speech model
for the synthesizer must be targeted to a specific person’s
voice. SV is also being used in forensic applications [12]
and therefore security against imposture is also of obvious
importance.

The problem of imposture against SV systems using syn-
thetic speech was first published over 10 years ago by Masuko,
et al. [13]. In their original work, the authors used an Hidden
Markov Model (HMM)-based text-prompted SV system [2]
and an HMM-based TTS synthesizer. In the SV system, feature
vectors were scored against speaker and background models
composed of concatenated phoneme models (not GMM-based
models). The acoustic models used in the speech synthesizer
were adapted to each of the human speakers [14], [15]. When
tested with 20 human speakers, the system had a 0% False
Acceptance Rate (FAR) and 7.2% False Rejection Rate (FRR);
when tested with synthetic speech, the system accepted over
70% of matched claims, i.e. a synthetic signal matched to a
targeted speaker and an identity claim of that same speaker.

In subsequent work by Masuko, et al. [16], the authors
extended the research in two ways. First, they improved their
synthesizer by generating speech using pitch information.
Second, they improved their SV system by utilizing both
pitch and spectral information. The pitch modeling techniques
used in synthesis were the same used in the SV system. By
improving the SV system, the authors were able to lower the
matched claim rate for synthetic speech to 32%, however, the
FAR for the human speech increased to 1.8%.

In the last 10 years, both SV and TTS systems have
improved dramatically. Around the same time as Masuko’s
work, Gaussian Mixture Model-Universal Background Model
(GMM-UBM) SV systems were first proposed [1]. Since
this time, GMM-UBM based SV systems have produced
excellent performance and have achieved EERs of 0.1% on
the TIMIT corpus (ideal recordings) and 12% on NIST 2002
Speaker Recognition Evaluations (SRE) (non-ideal recordings)
[17], [18]. Other systems based on Support Vector Machines
(SVMs) using Gaussian supervectors have been proposed and
in some cases can lead to lower EERs [19], [20].

Until recently, developing a TTS synthesizer for a targeted
speaker required a large amount of speech data from a
carefully prepared transcript in order to construct the speech
model. However, with a state-of-the-art HMM-based TTS
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synthesizer [21], the speech model can now be adapted from an
average model (derived from other speakers) or a background
model (derived from one speaker) using only a small amount
of speech data. Moreover, recent experiments with HMM-
based speech synthesis systems have also demonstrated that
the speaker-adaptive HMM-based speech synthesis is robust
to non-ideal speech data that are recorded under various con-
ditions and with varying microphones, that are not perfectly
clean, and/or that lack phonetic balance [22], [23]. In [23]
a high-quality voice was built from audio collected off of
the Internet. This data was not recorded in a studio, had
a small amount of background noise, and the microphones
varied in the data. Further [24], [25] reported construction
of thousands of voices for HMM-based speech synthesis
based on corpora such as the Wall Street Journal (WSJ0,
WSJ1, and WSJCAM0), Resource Management, Globalphone
and SPEECON. Taken together, these state-of-the-art speech
synthesizers pose challenges to SV systems.

In prior work, we utilized a state-of-the-art TTS synthe-
sizer and revisited the problem of imposture using a GMM-
UBM SV system with a small speech corpus [26] and then
extended to a larger corpus [27]. Recently, we examined
the performance using the SVM-based SV system and initial
experiments on detecting a synthetic speech signal [28]. In
this paper, we provide complete evaluations using both GMM-
UBM and SVM-based SV systems and results from a proposed
synthetic speech detector which uses phase-based features for
classification. First, we train two different SV systems (GMM-
UBM and SVM using Gaussian supervectors) using human
speech (283 speakers from the WSJ corpus). Second, we
create synthetic test speech for each of the 283 speakers by
adapting a background model to the targeted speaker. Finally,
we measure FAR/FRR when tested using human speech and
measure the matched claim rate using synthetic speech. As
we will demonstrate, the matched claim rate is above 90%
for each of the SV systems hence the vulnerability of the SV
systems to synthetic speech. Next, we turn our attention to
detection of synthetic speech as a means to prevent imposture
by synthetic speech. We summarize results with a previously-
proposed method which uses average inter-frame difference of
log-likelihood (IFDLL) and show that this is no longer a viable
discriminator for high-quality synthetic speech such as that
which we are using. Instead, we propose a new discrimination
feature based on relative phase shift (RPS) and show that this
can be used to reliably detect synthetic speech. We also show
a simple and effective method for training the classifier using
transcoded human speech as a surrogate for synthetic speech.

This paper is organized as follows. In Sections II and III, we
provide overviews of the SV and TTS systems. In Section IV,
we review IFDLL and provide details on our proposed RPS
feature for detecting synthetic speech. In Section V, we
describe the WSJ corpus and explain how we partitioned the
corpus for training and testing of all the required systems. We
note that although the WSJ journal corpus is not a standard
corpus for SV research, it is one of the few that provides
sufficient speech material from hundreds of speakers which is
required to construct synthetic voices matched to their human
counterparts. Section VI gives the evaluation results using the
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Fig. 1. Stages of training the SV systems. The GMM-UBM SV system is
trained with (a)-(b) and the SVM SV system is trained with (a)-(d). Although
the GMM-UBM is normally derived from non-target speakers, as described
in Section V, we have used target speakers.

WSJ corpus and its synthesized counterpart as well as the
results when using RPS to detect synthetic speech. Finally,
we conclude the article in Section VII.

II. SPEAKER VERIFICATION SYSTEMS

Our SV systems are based on the well-known GMM-UBM
described in [17] and the SVM using Gaussian supervectors
described in [19]. We briefly review these systems and our
implementation in the following subsections.

A. SV System Training

For both SV systems, feature vectors X = {x1,x2, . . . ,xT }
are extracted every 10 ms using a 25 ms hamming window
and composed of 15 MFCCs, 15 delta MFCCs, log energy,
and delta-log energy as elements.

Training the GMM-UBM system is composed of two stages,
shown in Fig. 1(a) and (b). The SVM using Gaussian supervec-
tors system includes these two stages and two additional stages
shown in Fig. 1(c) and (d). In the first stage, a GMM-UBM
consisting of the model parameters λUBM = {wi, ηi,Σi} is
constructed from the collection of speakers’ feature vectors.
Here, we assume M component densities in the GMM-UBM
and wi, ηi, and Σi represent respectively the weight, mean
vector, and diagonal covariance matrix of the i-th component
density where 1 ≤ i ≤M . These parameters are estimated us-
ing the Expectation Maximization (EM) algorithm. In practice
the GMM-UBM is constructed from non-target speakers.

In the second stage, feature vectors are extracted from target
speakers’ utterances. We assume the availability of several
utterances per speaker recorded (preferably) under different
channel conditions in order to improve the speaker modeling
and robustness of the system. Feature vectors from each
utterance are used to maximum a posteriori (MAP)-adapt only
the mean vectors of the GMM-UBM to form speaker- and
utterenace-dependent models λs,u = {wi, µs,u,i,Σi} where
µs,u,i is the MAP-adapted mean vector of the i-th component
density from speaker s and utterance u.

In the third stage (used for the SVM), the mean vectors
µs,u,i are then diagonally-scaled according to

ms,u,i =
√
wiΣ

−1/2
i µs,u,i (1)
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and stacked to form a Gaussian supervector for a speaker’s
given utterance

ms,u =

 ms,u,1

...
ms,u,N

 . (2)

In the fourth stage (used for the SVM), the target speaker’s
supervectors are labeled as +1 and all other speakers’ super-
vectors as −1. Parameters (weights, an and bias, b) of the
SVM using a linear kernel are computed for each speaker
through an optimization process. As derived in [29], an
appropriately-chosen distance measure between the mean vec-
tors µs,u,i, results in a corresponding linear kernel involving
the supervectors in (2) composed of diagonally-scaled mean
vectors (1).

In conventional GMM-UBM SV systems, we normally
assume a single training signal (or several utterances con-
catenated to form a single training signal) so that the speaker
model is simply λs = {wi, µs,i,Σi}. For the SVM, the speaker
model is denoted νs = {as,n, bs} where 1 ≤ n ≤ N and N
is the total number of supervectors.

B. SV System Testing

In SV system testing we are given an identity claim C and
feature vectors X from a test utterance and must accept or
reject the claim. For the GMM-UBM system, we compute the
log-likelihood ratio

Λ(X) = log p(X|λC)− log p(X|λUBM). (3)

where

log p(X|λ) =
1

N

N∑
n=1

log p(xn|λ) (4)

and N is the number of test feature vectors. The claimant
speaker is accepted if

Λ(X) ≥ θ (5)

where θ is the decision threshold. In the SVM system, the
supervector mtest is computed from the feature vectors X by
essentially repeating stages 2 and 3 from training. We then
compute

y(X) =
∑
n∈S

aC,ntC,nm
T
testmC,n + bC (6)

and accept the claim if y(X) ≥ 0. We denote S as the set of
indexes of the support vectors and tC,n as the labels associated
with the supervectors.

III. TEXT-TO-SPEECH SYNTHESIZER

Our TTS system is built using the framework from the
“HTS-2008” system [22], [30], which was a speaker-adaptive
system entered for the Blizzard Challenge 2007 [31] and 2008
[32]. In the 2008 challenge, the system had the equal best
naturalness and the equal best intelligibility on a training
data set comprising one hour of speech. The system was also
found to be as intelligible as human speech [30]. The speech
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Fig. 2. Overview of the HTS-2008 speech synthesis system, which consists
of four main components: speech analysis, average voice training, speaker
adaptation, and speech generation.

synthesis system, outlined in Fig. 2, consists of four main
components: speech analysis, average voice training, speaker
adaptation, and speech generation.

In the speech analysis component, three kinds of parameters
for the STRAIGHT (Speech Transformation and Represen-
tation by Adaptive Interpolation of weiGHTed spectrogram
[33]) mel-cepstral vocoder with mixed excitation (i.e., the
mel-cepstrum, logF0 and a set of band-limited aperiodicity
measures) are extracted as feature vectors for HMMs [34].
In the average voice training part, context-dependent, multi-
stream, left-to-right, multi-space distribution (MSD), hidden
semi-Markov models (HSMMs) [35] are trained on multi-
speaker databases in order to simultaneously model the acous-
tic features and duration. A set of model parameters (Gaus-
sian mean vectors and diagonal covariance matrices) for the
speaker-independent MSD-HSMMs are estimated using the
EM algorithm.

The training stages for the average voice models are
shown in Fig. 3. First, speaker-independent monophone
MSD-HSMMs are trained from an initial segmentation,
converted into context-dependent MSD-HSMMs, and re-
estimated. Then, decision-tree-based context clustering with
the MDL criterion [36] is applied to the HSMMs and the
model parameters of the HSMMs are tied at leaf nodes.
The clustered HSMMs are re-estimated again. The cluster-
ing processes are repeated twice and the whole process is
further repeated twice using segmentation labels refined with
the trained models in a bootstrap manner. All re-estimation
and re-segmentation processes utilize speaker-adaptive training
(SAT) [37] based on constrained maximum likelihood linear
regression (CMLLR) [38].

In the speaker adaptation component the speaker-
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Fig. 3. Overview of the training stages for average voice models.

independent MSD-HSMMs are transformed by using con-
strained structural maximum a posteriori linear regression
(CSMAPLR) [39]. Note that not only output pdfs for the
acoustic features but also duration models are also transformed
in the speaker adaptation [40]. In the speech generation
component, acoustic feature parameters are generated from
the adapted MSD-HSMMs using a parameter generation al-
gorithm that considers both the global variance of a trajectory
to be generated and trajectory likelihood [41]. Finally an
excitation signal is generated using mixed excitation (pulse
plus band-filtered noise components) and pitch-synchronous
overlap and add (PSOLA) [42]. This signal is used to excite
a mel-logarithmic spectrum approximation (MLSA) filter [43]
corresponding to the STRAIGHT mel-cepstral coefficients to
generate the synthetic speech waveform.

IV. DETECTION OF SYNTHETIC SPEECH

In this section, we investigate the problem of detection of
synthetic speech. We begin with a method which uses the
average IFDLL as proposed in [44]. We then propose a new
discrimination feature based on RPS and develop a classifier.

A. Average inter-frame difference of log-likelihood

The IFDLL is defined as [44]

∆n = | log p(xn|λC)− log p(xn−1|λC)| (7)

and the average IFDLL is given by

∆̄ =
1

N

N∑
n=1

∆n. (8)

The authors in [44] observed that for synthetic speech, average
IFDLL is significantly lower than that for human speech and
can be used as a discriminator. This difference was explained
as a result of the HMM-based synthesizer, used in the work,
generating a speech parameter sequence so as to maximize
the output probability. This maximization normally leads to a
time variation of the speech parameters of synthetic speech
becoming smaller than that for human speech.

In Fig. 4 we show the distributions of average IFDLL for
human and synthetic speech using the 283 speaker WSJ corpus
(subsets HS-B and TTS-B as described in Section IV). Using
the state-of-the-art HMM-based speech synthesizer described
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Fig. 4. Distributions of average interframe-difference of log-likelihood for
human and synthetic speech. Due to the overlapping distributions, the average
IFDLL cannot be used to detect synthetic speech.

in Section III, this measure no longer appears to be robust
enough to detect synthetic speech, since the distributions in
average IFDLL for human and synthetic speech have signifi-
cant overlap. In [27] we showed that IFDLL, dynamic-time-
warping of MFCC features, and automatic speech recognition
word-error-rate are not robust measures to detect synthetic
speech. The similar average IFDLL distributions can be ex-
plained because the state-of-the-art HMM-based speech syn-
thesizer that we use, includes global time variation models
[41].

B. Relative Phase Shift
Since the human auditory system is known to be relatively

insensitive to the speech signal’s phase [45], the vocoder used
in TTS is normally based on a minimum-phase vocal tract
model for simplicity. This simplification leads to differences in
the phase spectra between human and synthetic speech which
are not usually audible. However, these differences can be
used to construct a feature which allows detection of synthetic
speech.

We propose using the RPS representation of the harmonic
phase, which is a simple representation of signal phase for har-
monic speech models, as a discriminating feature for detecting
synthetic speech [46], [47]. RPS can be defined as follows. The
harmonic part of the speech signal may be represented as

h(t) =
∑
k

Ak(t) cos (Φk (t)) (9)

where Ak(t) is the amplitude and

Φk(t) = 2πf0kt+ θk (10)

is the instantaneous phase of the k-th harmonic. Here we
denote the fundamental frequency as f0 and initial phase of
the k-th harmonic as θk. The RPS values for every harmonic
are then calculated from the instantaneous phase Φk(t) at each
analysis instant ta using

RPSk = Φk(ta)− kΦ1(ta). (11)
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Fig. 5. Phasegrams of a voiced speech segment for five continuous vowels. a) Intantaneous phases b) Relative phase shift c) Signal waveform

More specifically, this transformation removes the linear
phase contribution due to the frequency of every harmonic
from the instantaneous phase and allows a clear phase structure
to arise, as shown in Fig. 5. The RPS values for voiced
segments are illustrated in Fig. 5(b) and show a structured
pattern along frequency as the signal evolves.

In order to use RPS values as features for classification and
detection of synthetic speech, several important steps must
be carried out. These steps were initially developed for an
Automatic Speech Recognition (ASR) task [47] and are listed
below: [47]

1) Due to the variable number of harmonics found in
a predefined frequency range, the dimensionality of
the vector of RPS values varies from frame to frame.
We transform the variable-dimension vectors into fixed-
dimension vectors by applying a Mel-scale filter bank
with a constant number of filters.

2) The dimensionality of the RPS vector is very high,
if the usual analysis bandwidth is considered. This is
problematic for training any statistical model, therefore
RPS values are computed over a 4 kHz bandwidth
and the Discrete Cosine Transform (DCT) is used at
the end of the process to decorrelate and reduce the
dimensionality.

3) The RPS values in (11) are wrapped phase values
and therefore may create discontinuities as shown in
Fig. 6(a)-(b). This is also problematic for parametriza-
tion. Therefore we unwrap the phase in order to avoid

the discontinuities in the RPS envelope.
4) The unwrapping process is ambiguous and very different

results may be obtained with similar data as shown in
Fig. 6(c)-(d). Therefore we differentiate the unwrapped
RPS values in order to alleviate the ambiguity problem
as illustrated in Fig. 6(e)-(f).

In order to develop a classifier for synthetic speech, we
compute 20 coefficients per speech frame according to steps
1-4. The mean of the differentiated unwrapped RPS (i.e. the
mean slope of the unwrapped RPS) has been removed before
calculating the DCT and added as a parameter, resulting in a
total of 21 coefficients per frame which are used as a feature
vector, yt for the classifier. Here only voiced segments of the
signals have been used, because there is no useful phase infor-
mation in unvoiced frames. The RPS values are then extracted
using a 10 ms frame-rate. Fig. 7 shows a spectrogram-like
representation of the parameters (i.e. time in horizontal axis,
frequency in the vertical axis and parameter value in grey or
coloured scale) obtained for one of the speakers, both for the
human speech and his synthetic counterpart. We can see clear
differences between the human and synthetic speech in the
figure. We use a 32-component density GMM in the classifier
trained on RPS feature vectors extracted from human and
synthetic speech signals.

Detection of synthetic speech occurs once the speaker veri-
fication system has accepted the identity (see Fig. 8)–currently,
we see no need to apply the synthetic speech detector (SSD)
if the SV system has rejected the identity. If an identity claim,
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C is accepted, we compute the log-likelihood ratio

ΛRPS(Y) = log p(Y|λC,human)− log p(Y|λC,synth) (12)

where Y = {y1,y2, . . . ,yT } is the sequence of RPS feature
vectors and λC,human and λC,synth represent GMMs of the
feature vectors for human speech and synthetic speech asso-
ciated with claimant C, respectively. The input test signal is
then classified as human speech if ΛRPS(Y) > 0, otherwise it
is classified as synthetic.

V. DATA SETS

For this research, we use the WSJ corpus from the Linguistic
Data Consortium (LDC) [48]. Although the WSJ journal
corpus is not a standard corpus for SV research, it is one
of the few corpora that provides several hundred speakers and
sufficiently long signals required for constructing each of the
components within the TTS, SV, and SSD systems [49]. From
the corpus, we chose the pre-defined official training data set,

SI-284, that includes both WSJ0 and WSJ1 as material data.
The SI-284 set has a total of 81 hours of speech data uttered by
283 speakers1 and was partitioned into three disjoint “human
speech” subsets HS-A, HS-B, and HS-C, as shown in Table I.
Subset HS-A was used to train the TTS system described in
Section III, subset HS-B was used to train the SV and SSD
systems described in Sections II and VI-B, and subset HS-
C was used to test the SV and SSD systems. Once trained,
the TTS system was used to generate the synthetic speech
subsets TTS-B and TTS-C as shown in Table I which are used
to train the SSD and test the SV/SSD systems respectively.
These different subsets were used to avoid any overlapping
of data sets and associated cross-corpus negative effects while
attempting to simulate realistic imposture scenarios2.

Training the SSD with synthetic speech has a practical
disadvantage, that is, a TTS synthesizer has to be trained
for each speaker in the SV system. Therefore, we have also
evaluated a more practical method that uses the STRAIGHT
vocoder to transcode the human speech signal as a surrogate
for TTS-generated (synthesized) speech. By transcoding, the
human speech signal is parametrized using a vocoder and
from this parametrization, the speech signal is reconstructed
in a process similar to that in the TTS speech generation
component. The transcoded human speech signal has artifacts
similar to those in the synthetic speech signal which can be
useful for simplifying the training of the SSD. In order to

1One speaker was removed from the data due to poor recording conditions.
2In future work, the average voice model of the TTS should be derived

from a different corpus.
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TABLE I
WALL STREET JOURNAL (WSJ) CORPUS PARTITIONS USED FOR TRAINING
AND TESTING OF TEXT-TO-SPEECH (TTS), SPEAKER VERIFICATION (SV),

AND SYNTHETIC SPEECH DETECTOR (SSD) SYSTEMS.

Human speech HS-A HS-B HS-C
(HS) train TTS train SV test SV

train SSD test SSD
Synthetic speech TTS-B TTS-C
(TTS) train SSD test SV

test SSD
transCoded speech CS-B
(CS) train SSD

evaluate this approach, we transcoded subset HS-B and created
the CS-B “coded speech” subset as shown in Table I. By
using CS-B instead of TTS-B to train the SSD, all system
components (TTS, SV, SSD) can be trained using only human
speech.

Since each speaker included in the SI-284 set has different
speech durations, we used varying lengths (73 sec to 27 min)
of training signals from subset HS-A to construct and adapt
the TTS system to each speaker. Some speakers have larger
amounts of data than those we can practically collect for the
imposture against the SV system.

TABLE II
SPEAKER VERIFICATION RESULTS FOR THE GMM-UBM SYSTEM AND

THE SVM USING GAUSSIAN SUPERVECTORS SYSTEM.

GMM-UBM SVM

EER (human speech) 0.35% 0.35%
Accepted matched claims 259/283 = 271/283 =
(synthetic speech) 91.5% 95.8%

VI. EXPERIMENTS AND RESULTS

A. Speaker Verification

For the two SV systems, we have trained on ≈90s speech
signals from subset HS-B and tested using ≈30s signals
from subsets HS-C and TTS-C. Training signals for the SVM
SV system were segmented into eight utterances per speaker
and used to construct Gaussian supervectors as described in
Section II-A. The evaluation for human speech was designed
so that each test utterance has an associated true claim and
282 false claims yielding 2832 tests. Test results for each
system under human speech are given in row 2 of Table II
and the Detection Error Tradeoff (DET) curves are shown in
Fig. 9. The low EERs (0.35% for both SV systems) are due
to the ideal nature of the recordings in the WSJ corpus and
the accuracy of the SV systems. We note that both the GMM-
UBM and SVM systems have about the same performance
under human speech.

The evaluation for synthetic speech was designed so that
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Fig. 9. DET curves for speaker verification using test signals from human
speakers. The EER is 0.35% for GMM-UBM and SVM systems.

each test utterance has an associated matched claim yielding
283 tests for imposture. (In a realistic imposture scenario, a
speech signal targeted at a specific speaker will be synthe-
sized and a claim only for that speaker will be submitted,
i.e. matched claim.) For both SV systems, the decision thresh-
olds are chosen for EER under human speech signal tests. Row
3 of Table II shows the results in which we can see over 91%
of synthetic speech signals with an associated matched claim
will be accepted by the systems. It is interesting to note that the
SVM using Gaussian supervectors accepts more claims using
synthetic speech than the GMM-UBM despite both systems
(under human speech) having the same EER and the SVM
system performing slightly better on the DET. As described
in an earlier paper, this result is due to significant overlap in the
score distributions for human and synthetic speech, as shown
in Fig. 10 [26]. Thus, adjustments in decision thresholding or
standard score normalization techniques cannot differentiate
between true and matched claims originating from human and
synthesized speech [50], [51].

B. RPS-Based Detection of Synthetic Speech

We trained the SSD on human speech using HS-B and syn-
thetic speech using TTS-B as in Table I and evaluated classifier
accuracy with human speech from HS-C and synthetic speech
from TTS-C. These results are shown in row 2 of Table III
where we find 100% accuracy in classifying a speech signal
as either human or synthetic. We also trained the SSD with
transcoded speech using CS-B as a surrogate for synthetic
speech and set the decision threshold to either zero or 1.65
for EER. These results are shown in row 3 of Table III where
we find with the decision threshold set to zero, human speech
signals are classified with 100% accuracy and synthetic speech
signals are classified with 90.10% accuracy. With the decision
threshold set to 1.65 for EER, we find 97.17% accuracy
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Fig. 10. Approximate score distributions for (a) GMM-UBM and (b) SVM
using Gaussian supervectors SV systems with human and synthesized speech.
Distributions for synthesized speech (red lines) have significant overlap with
those for human speech (red lines) leading to over a 91% acceptance rate for
synthetic speech with matched claims.

in classifying a speech signal as either human or synthetic.
Approximate distributions for the classifier scores, ΛRPS(Y)
are shown in Fig. 11 where we see with transcoded speech
(CS-B models) it is necessary to adjust the decision threshold
slightly upward for EER.

Next, we evaluated the overall system which includes the
SSD and SV systems as illustrated in Fig. 8. Table IV shows
acceptance rates for human speech for true claimants and
acceptance rates for synthetic speech for matched claims for
the overall system. Both GMM-UBM and SVM SV systems
are considered, with and without the SSD as illustrated in
Fig. 8. For convenience, the first row repeats the earlier results
(no synthetic speech detection) from Table II illustrating the
problem. Using the proposed SSD trained on TTS-B, the
acceptance rate for synthetic speech is now reduced from
over 91% to 0% with no change in the acceptance rate for
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Fig. 11. Approximate distributions for the classifier scores, ΛRPS(Y) when
tested with human and synthetic speech. Blue and red curves show classifier
performance when trained on human speech using HS-B and synthetic speech
TTS-B. Cyan and majenta curves show classifier performance when trained on
human speech using HS-B and transcoded speech CS-B. Both classifiers were
tested with human speech using HS-C and synthetic speech using TTS-C.

TABLE III
ACCURACY RATES FOR THE CLASSIFICATION OF HUMAN AND SYNTHETIC

SPEECH. CLASSIFIER IS TRAINED WITH HUMAN SPEECH SUBSET HS-B
AND EITHER TTS-B OR CS-B FOR SYNTHETIC SPEECH. CLASSIFIER IS
TESTED USING SUBSETS HS-C AND TTS-C. RESULTS ARE BASED ON A
ZERO THRESHOLD FOR LOG-LIKELIHOOD RATIO (12) AND INCLUDE AN
ADDITIONAL RESULT FOR CS-B WHERE THRESHOLD IS ADJUSTED FOR

EER.

Accuracy rate of classifier
Human Speech Synthetic Speech

Training Data (HS-C) (TTS-C)

HS-B/TTS-B 100% 100%
HS-B/CS-B 100%, 97.17% 90.10%, 97.17%

human speech. As mentioned earlier, constructing synthetic
voices for each human registered in the SV system is not very
practical, so we proposed training the SSD using transcoded
human speech as a surrogate for synthetic speech. Training
the SSD on CS-B, results in an acceptance rate for synthetic
speech of 9.5%, 9.9% for the GMM-UBM, SVM SV systems,
respectively with no change in the acceptance rate for human
speech. Finally, adjusting the decision threshold in the SSD
for EER, we can reduce acceptance rate for synthetic speech
to below 2.8% with a slight decrease in acceptance rate for
human speech (from 99.7% to 96.8%). From these results,
we conclude that the SSD trained on transcoded speech can
drastically reduce the number of accepted matched claims as-
sociated with synthetic speech, while maintaining SV accuracy
for human speech. Thus the proposed method is an accurate
and effective method for securing the SV systems against the
imposture using synthetic speech.

VII. CONCLUSIONS

In this paper, we have evaluated the vulnerability of speaker
verification (SV) to imposture using synthetic speech. Using
the Wall Street Journal corpus and two different SV systems
(GMM-UBM and SVM using Gaussian supervectors), we have
shown that with state-of-the-art speech synthesis, over 91%
of matched claims, i.e. a synthetic speech signal matched
to a targeted speaker and an identity claim of that same
speaker, are accepted. Thus despite the excellent performance
of the SV systems under human speech, the quality of syn-
thesized speech is high enough to allow these synthesized

TABLE IV
ACCEPTANCE RATES FOR HUMAN SPEECH (TRUE CLAIMANT) AND

SYNTHETIC SPEECH (MATCHED CLAIM) FOR OVERALL SYSTEM
CONSISTING OF SPEAKER VERIFICATION AND SYNTHETIC SPEECH

DETECTOR (SSD). IDEALLY THE SYSTEM HAS 100% ACCEPTANCE RATE
FOR HUMAN SPEECH, TRUE CLAIM AND 0% FOR SYNTHETIC SPEECH,

MATCHED CLAIM.

GMM-UBM SVM

Without SSD
Acceptance rate for human, true claim 99.7% 99.7%
Acceptance rate for synthetic, matched claim 91.5% 95.8%

With SSD trained on TTS-B
Acceptance rate for human, true claim 99.7% 99.7%
Acceptance rate for synthetic, matched claim 0.0% 0.0%

With SSD trained on CS-B
Acceptance rate for human, true claim 99.7% 99.7%
Acceptance rate for synthetic, matched claim 9.5% 9.9%

With EER SSD trained on CS-B
Acceptance rate for human, true claim 96.8% 96.8%
Acceptance rate for synthetic, matched claim 2.5% 2.8%

voices to pass for true human claimants. This result suggests
that synthetic speech may pose security issues for speech-
based remote/online authentication or incorrect speaker con-
firmation. As a potential solution to the imposture problem,
we have proposed a synthetic speech detector (SSD) based
on relative phase shift (RPS) features. Although remarkably
accurate, training the SSD requires that a TTS synthesizer
be constructed for each speaker in the SV system which is
not practical. Therefore, we have proposed using transcoded
speech as a surrogate for synthetic speech in training the SSD.
Our results show that we can reduce the acceptance rate of
matched claims using synthetic speech to less than 3%, while
maintaining SV accuracy for human speech.
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