
Architecture for adaptive multimodal dialog systems based on VoiceXML

Georg Niklfeld(1), Robert Finan(2), Michael Pucher(1)

(1) Telecommunications Research Center Vienna (ftw.)
(2) Mobilkom Austria AG

niklfeld@ftw.at, r.finan@mobilkom.at, pucher@ftw.at

Abstract

This paper describes application oriented research on architec-
tural building blocks and constraints for adaptive multimodal
dialog systems that use VoiceXML as a component technol-
ogy. The VoiceXML standard is well supported and promises to
make the development of speech-enabled applications so easy
that everyone with general web programming skills can ac-
complish it. The paper proposes a software architecture for
multimodal interfaces that emphasizes modularity, in order to
strengthen this potential by clearly separating different types of
development tasks in a multimodal dialog system. The paper ar-
gues that adaptivity is a central design concern for multimodal
dialog systems, but that adaptivity is not facilitated by the cur-
rent VoiceXML standard. This and other examined limitations
of VoiceXML for building multimodal dialog systems should
be repaired in upcoming work on a successor standard that will
explicitly target multimodal applications.

1. Introduction
Multimodal interfaces are important for pending 3G telecom-
munication data services, which will be invoked from devices
that have speech input/output capabilities but only small touch-
screens. The VoiceXML standard [1] is important in this con-
text because it promises a streamlined development process for
speech-enabled applications, which will allow third party soft-
ware developers without much speech processing expertise to
create the wide range of applications that is needed to make
3G and speech-access attractive to consumers. A broad array
of adaptation techniques are required, because in mobile usage
environmental conditions vary greatly, and because multimodal
interfaces have many open parameters that need to be set for
optimum usability in specific circumstances. In this paper we
describe design work on a multimodal dialog system prototype
developed by our group which attempts to reflect these issues.
The paper describes a set of building-blocks that emerge, but
also shortcomings of the VoiceXML standard that should be ad-
dressed in future derivate standards.

2. Multimodality, adaptivity, standardized
components

This section presents the arguments for the design goals of mul-
timodality, adaptivity and the use of standardized components,
which motivate the model architecture described in the subse-
quent section.

2.1. The importance of multimodality

Human face-to-face communication is multimodal, combining
the acoustic channel with visual and occasionally tactile chan-

nels. Human beings are therefore well equipped to communi-
cate multimodally, and multimodal communication is perceived
as very natural. In human-computer interaction, the use of spo-
ken or written natural language poses complexities that have
led to a dominance of visual interfaces consisting of text and
usually 2D graphics. Visual interfaces are very efficient under
some circumstances: written text allows rapid information up-
take; visual interfaces on large screens allow for showing large
amounts of information simultaneously, and humans are able to
focus on bits that interest them without having to process all
the rest in-depth; finally, visual interfaces are preferred consis-
tently for input and output of spatial information [2]. In visual
interfaces, text output can be used for information for which
graphical metaphors are not available, text input for unrestricted
content or inherently linguistic information such as names.

Yet, considering data services on 3G mobile devices, the
following factors constitute obstacles for relying solely on vi-
sual interfaces, and imply a real usefulness of added speech in-
terface capabilities:

� The terminal devices where 3G data services run will
have small displays in terms of size and resolution,
although a significant improvement over current WAP
phones is expected. Still, it will not be possible to mirror
the user experience of todays commercial web-sites con-
cerning the amount of information that can be presented
simultaneously. (Note also that the speed disadvantage
of TTS is less problematic for small amounts of infor-
mation.)

� While 3G terminals will be produced in various form-
factors, many of them will be too small to provide
comfortable alphanumeric keyboards, relying instead on
pointing devices such as a pen/touch-screen combina-
tion. Without a keyboard, text input becomes cumber-
some, even when some handwriting recognition/graffiti
technology is provided. Speech input is a logical alterna-
tive. The input dilemma of 3G devices is made yet more
severe where even a pointing device is lacking, like in
current mobile phones. This WAP-like scenario makes
data services without speech support so unattractive that
we consider it unlikely that large numbers of 3G devices
intended for data access will be in this category.

� In mobile usage situations, visual access to the display
may be impossible in certain situations, such as when
driving a car. Also, even where pointing-device and key-
board are provided, access to them is not possible when
a user has her hands busy for other activities. A speech
interface may still be usable in such situations.

We contend that the combination of these considerations takes
the case for multimodal interfaces for 3G services beyond a
nice-to-have status to that of a significant building-block that

needs to be put in place for successful deployment scenarios of
3G infrastructures to emerge. This is also the motivation for
application oriented research like the one described here, which
examines the technical feasibility of an economically attractive
development model for multimodal interfaces.

2.2. Types of adaptivity

We distinguish four practically relevant types of adaptation
tasks in multimodal dialog systems, as indicated in table 1.

situation user
attributes attributes

user user-controlled user-controlled
control situation adaptation user adaptation
system system-controlled system-controlled
control situation adaptation user adaptation

Table 1: Adaptation types

The discussion in section 2.1 referred to the variability of
usage situations for data services that comes along with mobile
usage. We refer to this type of adaptive requirements as user-
controlled situation adaptation. It demands user interfaces that
allow a flexible choice of modalities at many points during in-
teraction with the system. We believe that typically, the visual
interface will be the primary interface, which is active at all
times but allows the user to branch off into voice usage for a
suitable chunk of the interaction.

System-controlled situation adaptation comprises tech-
niques where the system autonomously monitors the interac-
tion, attempts to reason about situation attributes, and adapts in
order to avoid problems. For example, high levels of ambiance
noise may lead to poor performance of speech recognition. The
system may find out about this either by monitoring for low
confidence scores in speech recognition, or by monitoring the
frequency of corrections by the user. It may then choose either
to deactivate speech input completely, or, in a system that can
process coordinated, simultaneous inputs from the visual and
speech modalities, it may assign relatively lower weights to the
results from speech recognition and more to recognition results
from the visual interface, e.g. gesture or handwriting recogni-
tion [3].

Under the item of user-controlled user adaptation, multi-
modal dialog systems should allow an explicit modality choice
to suit a user’s personal preferences. E.g. it should be pos-
sible to disable all speech-interface elements of the interface.
Where user profiles are stored between sessions, the system
should allow to configure an assignment of elements of the in-
terface to one or the other modality, either through an explicit
profile-configuration mode (e.g. a user might want to assign
list-boxes to the speech modality), or by recording the modal-
ity choices of the user in the background during interactions.
Again, where systems allow coordinated, simultaneous input on
multiple modalities, the user should be able to select a relative
weighting for the modalities.

Finally, system-controlled user adaptation is an impor-
tant issue in speaker independent automatic speech recogni-
tion (ASR) systems as common in telephony-oriented dialog
systems. As the available amount of adaptation data from a
speaker grows during a session, iterative speaker adaptation can
reduce the word error rate of a speaker independent system to
about half, until the error rate of comparable recognizers that

are trained in a speaker dependent fashion is matched [4].
Outside the acoustic domain, other relatively static charac-

teristics of users can be reflected in user models [5] that can
lead to adaptation of dialogs or user interfaces. Such user mod-
els collect data on: knowledge of the user, to influence the
amount of guidance provided; abilities of the user, to influence
the choice of more or less complex input patterns by the system;
misunderstandings exhibited by the user, to provide tailored ex-
planations of examples. User models can either be acquired
new for each user during the interaction (although for telephony
based dialog systems, which are typically used infrequently by
any user, this may not be feasible), or an existing user model
may be attributed to new users, and then adapted further.

While all four discussed adaptation types are important for
good multimodal dialog systems, the subsequent discussion of
available standardized components and system architectures,
and in particular of the VoiceXML standard, will show that
these frameworks currently do not support system-controlled
adaptation adequately, especially not in those cases where in-
formation from speech recognition and from the dialog man-
agement platform would have to be integrated. We will return
to this problem in section 5.

2.3. Standardized components

In 1999, the EU-sponsored DISC project undertook a compar-
ison of seven toolkits for dialog management in spoken dialog
systems [6]. The dialog management component is the central
part of a dialog system and of particular importance in a discus-
sion about streamlined development processes for multimodal
interfaces, because it is the bridge between the intelligent inter-
face technologies and the underlying application logic of appli-
cation servers and databases. The DISC-survey finds platforms
that offer rapid prototyping support, partly via integrated de-
velopment environments. As most of the toolkits are shipped
together with speech recognition and speech synthesis engines,
this frees application developers to focus, firstly, on the dialog
design, and secondly, on interfacing to the application core.

The work done with W3C support on the VoiceXML stan-
dard [1] represents another conceptual step forward from that
state of affairs for two reasons. Firstly, being an internet stan-
dard, VoiceXML goes beyond manufacturer-specific toolkits
that are not compatible with each other by providing a credible
set of target interfaces for all players in the industry. Second,
it chooses XML and the associated web-programming technol-
ogy both as a format for specification of the dialog manage-
ment, and for interfacing to the application logic. The two most
important aspects for a standardized component framework for
dialog systems have thus been brought in line with web tech-
nology, which is what was needed to create that promise of a
platform for speech-enabled applications that is easily acces-
sible to developers with a general, and not speech processing
specific, background. Today one can add that VoiceXML has
received important support from major players in the industry
who have made development platforms for VoiceXML-based
applications available free of charge for developers. The only
potential downside of recent developments is that the platform
manufacturers have also included some proprietary elements in
their implementations, making direct transfer of VoiceXML ap-
plications from one platform to another again impossible.

While early requirements documents for VoiceXML explic-
itly treat multimodality in the context of the discussion on the
inclusion of DTMF input in the standard [7], the standard is
not written to cover general multimodal applications. Subse-

quently, W3C has drafted a requirements document for a multi-
modal dialog language [8] and currently a new working group
on that topic is being assembled. At present however, the stan-
dard provides no intentional support for general multimodal
systems. The most important drawback that we found in our
attempts to nevertheless build a multimodal architecture around
VoiceXML, is that it is not possible to make an active voice dia-
log running in a VoiceXML browser aware of events that occur
outside the voice browser, e.g. at a visual interface: VoiceXML
neither allows for linking in Java applets that could receive
pushed notifications, nor does it provide any other interface for
external events. Our architecture for multimodal dialog systems
based on VoiceXML is considerable influenced by this fact.

3. Architecture
In a project at our institution that follows the longer term goal
to develop architectures for multimodal dialog systems for 3G
telecommunications infrastructures, for the benefit of our sup-
porting partner companies from the Austrian telecommunica-
tions industry, we are currently developing an architecture that
shall: use mainstream technologies and standards as far as pos-
sible, to test their capabilities and limitations; be general enough
to scale from our first small prototypes to bigger systems that
are close to market-readiness; provide the basis for usability re-
search on multimodal interfaces.

The architecture shall support a multimodal interface that
shall combine a visual interface via HTML and Java applets
in a visual web browser with a voice interface built using
VoiceXML. Communication between the visual browser and
the voice browser is mediated via a central application server
that is built using Java servlet technology in combination with a
web server.

In [8], three types of multimodal input are distinguished:

1. sequential multimodal input is the simplest type, where
at each step of the interaction, either one or the other
input modality is active, but never more than one simul-
taneously;

2. uncoordinated, simultaneous multimodal input allows
concurrent activation of more than one modality. How-
ever, should the user provide input on more than one
modality, these informations are not integrated but will
be processed in isolation, in random order;

3. coordinated, simultaneous multimodal input exploits
multimodality to the full, providing for the integration
of complementary input signals from different modali-
ties into joint events, based on timestamping.

Because we cannot send events about the visual interface to the
dialogs in the voice browser (cf. section 2.3), we maintain that
only the sequential multimodal input pattern can be properly
realized with the current version of the VoiceXML standard:
The other patterns require that even while the voice interface
is active, e.g. listening for user speech, it must be possible for
the multimodal dialog to change state based on inputs received
from the visual interface. In the sequential mode on the other
hand, it is possible to deactivate the visual interface whenever
voice input is activated.

In this case then, the choice of multimodal interaction pat-
tern is determined by features of the components used. In many
realistic application development efforts, the interaction pattern
will be determined by user-level requirements that have to be
met. Anyhow, the choice of multimodal interaction pattern will

certainly be a dimension in which variation occurs. For the pur-
poses of the demonstrator development in our project, it was
important to find a software architecture that can remain stable
across different patterns and across interface types.

This can be accomplished by a modular or object-oriented
design which separates the central application server into the
following functions:

visual communicator: a modular handler for the visual inter-
face;

voice communicator: a modular handler for the voice inter-
face;

transaction module: encapsulates the transaction needed for
the application logic;

multimodal integrator: handles all message flows between
the interface modules, and between the interface mod-
ules and the transaction module.

The resulting system architecture is shown in Fig. 1.

 visual browser
 (html, applet)

 voice browser
 (VoiceXML)

application server
(servlet)

 visual
 communicator

 voice
 communicator

 multimodal
 integrator

 transaction
 module

 database

visual IF vo
ic
e
IF

H
T
T
P

I
P
C H

T
T
P

Figure 1: Multimodal Architecture

Both the visual and the voice user interface are realized by
standardized components in line with general web technologies
(visual web browser and VoiceXML browser). Within the appli-
cation server, the architecture stipulates a specialized interface
handler for each modality.

For example in our prototype, the voice communicator pre-
pares VoiceXML documents which it puts on a web server that
is associated to the application server. Once the VoiceXML
interpreter of the voice browser has been started (after a user-
triggered event, e.g. an incoming phone call), each of the
VoiceXML documents processed by the interpreter is pro-
grammed so as to terminate with a load of a successor docu-
ment from the web server. Our voice communicator simply pre-
pares these successor documents based on messages it receives
from the multimodal integrator. When the voice interface is not
active, the prepared documents contain just an idle loop that
terminates after some time, e.g. 0.5 seconds. When the multi-
modal integrator decides (based on user input) that a chunk of
the interaction shall be performed via voice, it sends a message
indicating field labels and data-types (e.g. the range of an enu-
meration) to the voice communicator, which instead of an idle

VoiceXML document now produces a VoiceXML dialog docu-
ment that executes the respective voice dialog with the user and
returns results to the multimodal integrator.

The visual communicator is designed similarly to prepare
HTML pages and applets for the visual browser. In our proto-
type, the visual interface includes controls that allow the user to
explicitly activate the voice interface for a group of input fields.
When this is done, the visual communicator deactivates all con-
trol elements on the visual interface, and sends a message with
the user request for voice dialog to the multimodal integrator.

The multimodal integrator is the only part in the proposed
architecture where information from more than one modality is
processed. The way this processing is done defines the multi-
modal interaction pattern. To change the pattern, the architec-
ture envisages that one implementation of the multimodal inte-
grator would simply replaced by another, without any changes
to other parts of the systems. This of course presupposes that the
interfaces between the the multimodal integrator and the inter-
face handlers have been defined so generally that all occurring
multimodal interaction patterns are covered. A description of
this interface is an area for further study.

4. Application
We believe that within the 3G data service scenario discussed
earlier, even with only sequential multimodal input it is possible
to create multimodal interfaces that are better than existing in-
terfaces that are just visual. Currently we are developing multi-
modal interfaces to existing web services with visual interfaces
and plan to perform comparative usability studies. For our pro-
totype, we target a typical route-finder application, where the
user enters two addresses in Vienna and the system returns a
graphical map that shows the shortest path between the two lo-
cations (such a service is available on the WAP portal of one of
our partner companies). On mobile devices that do not provide
a comfortable keyboard, entering street names is difficult. The
range of possible names is also too large (c. 8000 for Vienna)
to make selection from a list-box an option. In our interface, we
request to specify the city district or the initial letter of the street
name first. This can be entered by voice, or via selection from a
visual list, and narrows down the search space for possible street
names to 400 names on average. We assume that most users will
prefer to use speech recognition for the selection among these
400. If speech recognition proves too unreliable even for that,
then it is also possible to specify both district and first letter,
which will narrow the search space down to c. 16 names.

5. Discussion
In our view, these preliminary results show that VoiceXML can
be used to build simple, but nevertheless useful multimodal in-
terfaces for typical data services for mobile access. Once first
implementations of the voice communicator and the multimodal
integrator are available, it should become quite easy for the gen-
eral web programmer to generate further multimodal interfaces
for existing data services.

Yet, returning to the earlier discussion of adaptivity require-
ments for multimodal dialog systems in section 2.3, we have
noticed in our architecture work that some important types of
system-controlled adaptation are not supported by the highly
modular approach that underlies both VoiceXML and our mul-
timodal architecture. Information about environment character-
istics that is easily obtainable in speech recognition, such as the
level of ambiance noise and confidence scores in speech recog-

nition, are kept local in the speech recognition component used
by the VoiceXML browser (as part of the implementation plat-
form, which is not further considered by the standard). They are
not accessible in the VoiceXML browser, and therefore neither
in the voice communicator, nor in the multimodal integrator,
where they could be used to influence modality selection. Other
types of system-controlled adaptation can be implemented in
the multimodal integrator, provided the interface browsers and
interface handlers are designed to provide the required informa-
tion flows.

Therefore, while we strongly support modular architectures
and components that will allow efficient development of multi-
modal interfaces by a broad base of web developers, we would
also appeal to the standards bodies to include dedicated inter-
faces in the component standards to enable system-controlled,
centrally processed adaptivity, for example in the currently
planned multimodal extension to VoiceXML.

6. Conclusions
This paper has demonstrated that using VoiceXML, a modular
architecture for simple, yet useful multimodal interfaces to data
services for mobile access can be defined. We plan to continue
this work to define further building blocks for a development
model for speech and multimodal interfaces that is streamlined
with web technologies. A problem that we have identified is the
lack of support for system-controlled adaptation in VoiceXML.
We hope that this will be addressed in future work by the stan-
dardization bodies.

Acknowledgements
This work was supported within the Austrian competence center
program Kplus, and by the companies Alcatel, Connect Austria,
Kapsch, Mobilkom Austria, and Nokia.

7. References
[1] W3C, “Voice eXtensible Markup Language (VoiceXML)

version 1.0,” http://www.w3.org/TR/2000/NOTE-
voicexml-20000505/, 2000.

[2] S.L. Oviatt, A. DeAngeli, and K. Kuhn, “Integration and
synchronization of input modes during multimodal human-
computer interaction,” in Proc. of CHI97, New York, 1997,
pp. 415–422, ACM Press.

[3] A. Rogozan and P. Delegise, “Adaptive fusion of acous-
tic and visual sources for automatic speech recognition,”
Speech Communication, 26, no. 1-2, pp. 149–161, 1998.

[4] C. J. Leggetter and P. C. Woodland, “Speaker adaptation of
continuous density HMMs using multivariate linear regres-
sion,” in Proc. of ICSLP 94, Yokohama, 1994, pp. 451–454.

[5] A. Kobsa and W. Wahlster, Eds., User Models in Dialog
Systems, Springer, Berlin, 1989.

[6] DISC, “Deliverable d2.7a: State-of-the-art survey of dia-
logue management tools,” Tech. Rep., Esprit Long-Term
Research Concerted Action No. 24823, 1999.

[7] W3C, “Dialog requirements for voice markup lan-
guages W3C working draft 23 december 1999,”
http://www.w3.org/TR/voice-dialog-reqs/, 1999.

[8] W3C, “Multimodal requirements for voice markup
languages W3C working draft 10 july 2000,”
http://www.w3.org/TR/multimodal-reqs, 2000.

