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Abstract
For languages where extensive audio data and text transcrip-
tions are available, text-to-speech (TTS) systems have show-
cased the ability to generate speech that closely resembles nat-
ural human speech. However, the development of TTS systems
for dialects and language varieties poses challenges such as lim-
ited data availability and strong regional variations. This paper
presents a TTS system tailored for under-resourced language
varieties spoken in Austrian regions. The system is built upon
the FastSpeech 2 architecture and includes modifications to in-
corporate dialect embeddings for training and inference. It is
demonstrated that employing dialect embeddings and a standard
German grapheme-to-phoneme conversion is effective in mod-
eling language varieties and provides means to shift a person’s
spoken variety from one to another. This allows for the genera-
tion of regional standards for dialect speakers or the generation
of dialect speech with the voice of a standard speaker. The find-
ings unveil new possibilities and applications in other multilin-
gual contexts where shared characteristics within the language
or dialect embedding space can be leveraged.
Index Terms: TTS, FastSpeech, Language embedding, Dialect
modeling, Under-resourced languages

1. Introduction
Text-To-Speech (TTS) systems have undergone a notable transi-
tion towards deep learning methodologies, wherein deep learn-
ing, and especially end-to-end models, have gained significant
prominence, surpassing the traditional usage of Hidden Markov
Models (HMMs) [1]. This shift has been motivated by the no-
table improvements demonstrated by deep learning models in
TTS synthesis due to the availability of large training datasets
and computational resources. Prominent examples for such im-
plementations are Tacotron [2], Tacotron 2 [3], FastSpeech [4],
FastSpeech 2 [5], and VALL-E [6]. To further enhance the capa-
bilities of TTS systems, there have been efforts to incorporate
intonation and emotion controllability through speaking style
modification techniques, such as Global Style Tokens (GST)
[7]. These techniques operate at the level of individual utter-
ances, enabling finer control over various aspects of speech ex-
pression.

While the transfer of accents between speakers has been ex-
plored using parallel corpora in the context of English accents
[8], the absence of such source-target corpora poses a challenge.
When parallel corpora are unavailable, accent transfer for TTS
systems can be accomplished using an encoder-decoder setup.
This involves pre-training the system with non-accented speech
and subsequently fine-tuning it with accented speech. [9] pro-
poses to train a speech encoder that maps phoneme sequences
to the target speech by pre-training a TTS system with target

accented speech and updating the encoder to minimize the loss
between speech embeddings and text embeddings. Visualiza-
tion of the vowel space during learning and converting General
American English (24 hours of speech for a single speaker) to
New Zealand English (3 hours of speech for a single speaker)
is presented in [10]. [11] presents a scenario for generating
accented speech with 9.66 hours of recorded speech for pre-
training and less than 20 minutes for the target accent.

While accents primarily involve changes in phoneme pro-
nunciation and prosody [12], dialects encompass a wide range
of linguistic variations, including phonetic, lexical, and gram-
matical differences. [13, 14, 15] showcase previous approaches
to modeling TTS systems for Standard Austrian German (SAG)
and Austrian dialects. Additionally, audiovisual speech synthe-
sis using HMMs is described in [16]. It is important to note
that the SAG refers to the standard German spoken in Austria,
which differs from Standard German German (SGG), the stan-
dard German spoken in Germany [17, 18]. In the aforemen-
tioned approaches for the synthesis of the Austrian language,
only the acoustic model’s performance is investigated. Either a
separate step is involved to develop a Grapheme-To-Phoneme
(G2P) conversion system, or full-context dialect phoneme la-
bels are used from phonetic transcriptions. Furthermore, a near-
standard orthography is employed for dialects that is readable
by non-experts [13, 14, 15].

In this study, four different varieties are considered: three
dialects (Viennese dialect1 (VD), Bad Goisern (GOI), Innervill-
graten (IVG)), and one standard variety (Standard Austrian Ger-
man (SAG), also referred to as AT in this study). VD, the
Middle Bavarian GOI, and the South Bavarian IVG dialect are
examples of dialects with large deviations from the standard
[19, 15]. The present study demonstrates the ability of a TTS
synthesis model to acquire phonetic substitutions by integrat-
ing additional dialect embeddings and utilizing an SGG G2P
system for text input. The term “dialect embedding” in this
study refers to a high-dimensional vector representation used to
capture the linguistic characteristics and variations specific to a
particular dialect. Alternatively, an internally developed SAG
G2P system could be used as a reference, but using an openly
accessible SGG G2P module makes the results more applicable
for other varieties (e.g., standard Swiss German). The control
of the target speaker’s voice and dialect is achieved through two
primary components: (I) a speaker embedding (also referred to
as utterance embedding in the FastSpeech 2 implementation),
and (II) a dialect embedding. Speaker and dialect embeddings
are extracted and trained on a per-file basis. During inference,

1In this paper, the term “dialect” refers to all non-standard varieties
spoken in Austria, including the Viennese dialect, which is now recog-
nized as a sociolect as it is based on social criteria rather than regional
distinctions.
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a reference file is used for the speaker embedding, while a per-
variety averaged dialect embedding is utilized. Training and
inference are conducted using two distinct approaches: (1) tran-
scribed phoneme labels and (2) text-level processing with a gen-
eralized G2P conversion and standard German pronunciation
rules. Using a general G2P conversion has the advantage that
pronunciation differences can be directly learned by the system.

The main contributions of this work include:
• Development of a publicly available Austrian German TTS

system.
• Dialect shifts for combinations of speakers and dialect em-

beddings.
• Evaluating the perceived quality of synthesized samples for

Austrian varieties.
• Evaluating the perceived effects of dialect shifts.

The paper is structured as follows: Section 2 presents a de-
tailed description of the used tools and implemented adapta-
tions. Section 3 describes the dataset, the setup for experiments,
and presents results from subjective and objective evaluation
metrics. Section 4 concludes the findings and contributions and
outlines future research.

2. Methods
FastSpeech 2 [5] is a state-of-the-art neural text-to-speech syn-
thesis system that employs a duration predictor and a non-
autoregressive vocoder. The architecture has proven to be
highly effective for TTS, particularly in scenarios with limited
audio resources [20]. The implementation of FastSpeech 2 pro-
posed in [21] is chosen as the baseline (BL) model for this work.
The toolkit is adapted so that it converts labels from the Speech
Assessment Methods Phonetic Alphabet (SAMPA) to the Inter-
national Phonetic Alphabet (IPA) through a lookup table and
uses a pre-trained language identification system2 to extract di-
alect embeddings that are used for training and inference. It
is hypothesized, that large-language models like wav2vec [22]
and wav2vec 2.0 [23], which uses 128 languages and nearly
half a million hours of speech, are sufficient to cluster dialects
after being fine-tuned on the task of language identification. In
a multilingual context, Austrian, Dutch, English, French, Ger-
man, Italian, Spanish, Polish, and Portuguese embeddings (100
audio samples per language) are extracted from the Common-
Language corpus3. Mapping the embedding space of these Eu-
ropean languages onto a three-dimensional space using Uni-
form Manifold Approximation and Projection (UMAP) offers
insights into the acoustic proximity relationships among these
languages. Notably, Austrian (located at the top) is found to
have its closest neighbors in German (positioned just below the
top) and Dutch (found to the left), as illustrated in Figure 1. This
arrangement underscores the proximity of closely related lan-
guages, such as Austrian and German or Portuguese and Span-
ish, and provides means for using these embeddings to jointly
train a TTS system, as shown in Section 3.3. In Figure 2, the
embeddings of four Austrian varieties are visualized in a two-
dimensional space using 100 randomly selected utterances for
each variety. It is demonstrated that the language embedding
acts as a dialect embedding within a language, as GOI and IVG
exhibit distinct separations. Notably, AT and VD exhibit over-
lapping regions, while VD appears to be centrally positioned in

2https://huggingface.co/TalTechNLP/voxlingua107-xls-r-300m-
wav2vec

3https://doi.org/10.5281/zenodo.5036977

Figure 1: Visualization of language embeddings from European
languages projected onto a three-dimensional space. The colors
represent the true labels of the languages.

Figure 2: Language embeddings from Austrian varieties pro-
jected into a two-dimensional space.

the embedding space. The observed overlap between AT and
VD can be attributed to the fact that certain VD samples, partic-
ularly those consisting of very short utterances, may not possess
enough distinctive features to be reliably distinguished from AT,
and vice versa.

While a multi-lingual pre-trained duration aligner is used
for initialization, both the acoustic model for mel-spectrogram
generation (FastSpeech 2) and the vocoder (HiFi-GAN [24]) are
trained only on the data described in Section 3.1 without the use
of a pre-trained model. The acoustic models are trained for 500
thousand steps and HiFi-GAN is trained for 2.5 million steps as
suggested in the framework. Standard settings are applied to the
FastSpeech 2 implementation4, with the only modification be-
ing a decreased batch size of eight for the acoustic model. The
main change in architecture is the entry point of the language
embedding and the way that the embedding is concatenated.

4https://www.github.com/DigitalPhonetics/IMS-Toucan/tree/
Multi Language Multi Speaker
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Figure 3: Proposed architecture of the encoder/decoder to in-
corporate language embeddings after the utterance embedding
within the FastSpeech 2 framework.

To incorporate the extracted language embeddings, the encoder
and decoder layers undergo the following adaptations: after the
utterance embedding (residual), the language embedding with
a dimension of 2048 is projected to a bottleneck dimension of
128 using a linear layer and a softsign activation function. Af-
ter that, it is projected to the dimension of the residual and con-
catenated with the utterance embedding. The new architecture
is illustrated in Figure 3.

3. Experiments and results
The BL system serves as a comparison for later experiments
and consists of the original FastSpeech 2 framework trained
on phoneme-level label files. The second system uses per-file
extracted language embeddings – treating them as dialect em-
beddings – and concatenates the embeddings after the utter-
ance embedding as described in Section 2. The third system
uses the before mentioned adaptation (ADP), but uses text in-
put and a German standard G2P conversion (espeak-ng5) in-
stead of phoneme labels. Examples can be found at https:
//sociolectix.org/ttssigul23/.

3.1. Dataset

The dataset employed in this study consists of four Austrian
varieties: SAG, VD (Vienna “Wien”), GOI (Upper Austria
(“Oberösterreich”)), and IVG (East Tyrol (“Osttirol”)). The
data is taken from three different corpora:

1. The Goisern and Innervillgraten Dialect Speech (GIDS) cor-
pus is a collection of audiovisual speech recordings for re-
search purposes. It consists of a total of 7068 sentences spo-
ken by eight speakers (4f, 4m) from two Austrian villages,
Bad Goisern and Innervillgraten [16].

2. The corpus developed within the research project “Viennese
Sociolect and Dialect Synthesis” (VSDS), where three syn-
thetic voices are built [25].

3. The Wiener Corpus of Austrian Varieties for Speech Synthe-
sis (WASS) with read speech from a total of 19 speakers of
standard Austrian German (6f, 13m) [26, 27]. The reading
material contains, among others, sentences from the Berlin-
Marburg corpus and the Kiel corpus, resulting in a total of
8293 utterances.

5https://github.com/espeak-ng/espeak-ng

Table 1: Training data statistics.

Location Gender Minutes Utterances

Bad Goisern 2f, 2m 112.6 2509
Innervillgraten 2f, 2m 107.9 2377
Viennese dialect 2f, 5m 269.2 5641
Standard Austrian 6f, 13m 432.5 9029

After deleting erroneous recordings and splitting the dataset
into training and test files, the model is trained using 2509 ut-
terances for GOI, 2377 utterances for IVG, 5641 utterances for
VD, and 9029 utterances for SAG as described in Table 1.

3.2. Mean opinion score evaluation

The subjective evaluation is done through an online listening
experiment using [28] and is administered to a nearly random
sample of individuals residing in Austria whose native lan-
guage is German. A total of 21 participants took part in the
evaluation. While participants were familiar with the German
language spoken in Austria, their familiarity with specific di-
alects varied. The Mean Opinion Score (MOS) of the natu-
ralness of speech samples is evaluated on a scale from 1 to
5 (1=“Sehr schlecht (bad)”, 2=“Schlecht (poor)”, 3=“Durch-
schnittlich (fair)”, 4=“Gut (good)”, 5=“Ausgezeichnet (excel-
lent)”). The evaluation involves three types of stimuli: ground
truth (GT) – original recordings in 48 kHz, BL – standard im-
plementation with phoneme labels, and ADP – adapted method
with phoneme labels. The test consists of 150 speech samples:
36 for GT and 57 each for BL and ADP methods. The primary
objective of the test is to evaluate whether the changed archi-
tecture either preserves or diminishes the quality of the speech
samples. The evaluation results for these three systems are pre-
sented in Table 2. To interpret the results of the listening exper-
iment, a Wilcoxon signed-rank test is performed on the rating
scores due to their non-normal distribution. The GT stimuli re-
ceive a rating of 3.88, indicating that participants perceive the
best achievable results to be close to the “good” range. The de-
viation from a score of five can be attributed to the recording
conditions and participants’ challenges in evaluating the natu-
ralness of unfamiliar dialects. BL and ADP are both rated close
to “fair” (BL: 2.86, ADP: 2.85), indicating a lower quality com-
pared to GT. However, there is no statistically significant dif-
ference (p-value = 0.67) observed between BL and ADP, sug-
gesting that the proposed method does not result in a significant
decrease compared to BL.

Table 2: MOS with 95% confidence intervals.

Method MOS

Ground truth 3.88 ± 0.92
Baseline (phoneme labels) 2.86 ± 1.04
Adaptation (phoneme labels) 2.85 ± 1.03

3.3. Standard-dialect ratings

In this section, it is evaluated whether the utilization of dialect
embeddings and near-standard text input effectively induces a
speaker’s shift from one language variety to another. On each
page of the experiment, the same participants as in Section 3.2
are provided with a reference sample and four speech samples.
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In a Mushra-like manner, each presented page includes a desig-
nated reference sample of the speaker’s main variety (original
recording) as well as a hidden reference of the targeted vari-
ety within the stimuli (original recording of the target variety,
spoken by a different individual). The four samples are then
rated on a scale from 1 to 5 (1=“Dialekt (dialect)”, 2=“eher
Dialekt (rather dialect)”, 3=“mittel (intermediate)”, 4=“eher
Hochdeutsch (rather standard)”, 5=“Hochdeutsch (standard)”).
This experimental setup is selected due to the limited number
of participants and to create a manageable task that benefits
from a clearly defined reference and anchor point on the rat-
ing scale. In the example of an AT speaker and a target variety
of GOI, there are five stimuli present on each page, of which
four are to be rated: “reference” (original recording of a GOI
speaker, unrated), “stimulus 1” (AT speaker synthesized with
AT embedding, rated), “stimulus 2” (AT speaker synthesized
with GOI embedding, rated), “stimulus 3 – hidden reference”
(original recording of GOI speaker, rated), and “stimulus 4 –
lower anchor” (original recording of AT speaker, rated). The
text input is extracted from the test set of the target variety (e.g.,
GOI: “Wart ein wenig, ich will dir was sagen.”). Two pages
(utterances) are presented for each of the dialect shifts of one
standard speaker (2*1*[AT-VD, AT-GOI, AT-IVG]), one dialect
speaker (2*1*[VD-AT, VD-GOI, VD-IVG]), four GOI speakers
(2*4*[GOI-AT]), and four IVG speakers (2*4*[IVG-AT]) two
pages with different samples are presented to each participant
with a total of 28 pages. Figure 4 shows the mean box plots
of all utterances (for simplicity, AT embeddings are averaged
in Figure 4a, as well as VD embeddings in Figure 4b). Signifi-
cance testing is conducted for paired comparisons, yielding the
following results:
• AT: In the case of one AT speaker, a significant difference

in rating exists when comparing stimuli using {AT and VD}
embeddings, {AT and GOI} embeddings, and {AT and IVG}
embeddings.

• VD: In the case of one VD speaker, {AT and VD} embed-
dings show a significant difference, but there is neither a sta-
tistically significant difference between {VD and GOI} em-
beddings, nor between {VD and IVG} embeddings. In the
case of this particular speaker, the distinction between AT
and VD is less pronounced compared to the other speakers.
This observation aligns with the overlapping regions of those
two varieties, as illustrated in Figure 2.

• GOI: In the case of four GOI speakers, there is a statistically
significant difference between {GOI and AT} embeddings.
This finding suggests that the inclusion of a limited number
of utterances spoken in AT within the data for GOI (and IVG)
speakers positively impacts the model’s ability to capture di-
alect shifts.

• IVG: In the case of four IVG speakers, there is a statistically
significant difference between {IVG and AT} embeddings.

However, it is important to note that this test is intended to
showcase the feasibility of shifting a standard speaker to a di-
alect. With this feasibility confirmed, future tests need to be
specifically designed to assess whether the shifted speech is per-
ceived as the intended target dialect and not merely any dialect.

To validate the preservation of the speaker’s voice attributes
after the shift in variety, a speaker verification system6 is em-
ployed to measure the cosine similarity [29] between original
and shifted samples. While a cosine similarity score of 1 indi-
cates perfect similarity between two speakers, a score close to 0

6https://github.com/resemble-ai/Resemblyzer

(a) AT speaker (b) VD speaker

(c) GOI speakers (d) IVG speakers

Figure 4: Subjective standard-dialect ratings using standard
and dialect embeddings.

signifies dissimilarity, i.e., different voices. Using two original
recordings (R1, R2) as reference samples for each speaker and
one synthesized shifted sample (S) from the same speaker, the
cosine similarity is calculated between R1-R2 (reference value),
R1-S, and R2-S. Calculations are done for each shifted exam-
ple that is presented in the listening experiment. The average
similarity score for R1-R2 samples over all speakers is 0.81,
while the average score of R1-S and R2-S is 0.79, indicating
that the shifted samples originate from the same speaker as the
references.

4. Conclusions

This paper presents an effective method to incorporate dialect
embeddings for training a FastSpeech 2 text-to-speech synthe-
sis model. It was shown that dialects can be effectively mod-
eled using near-standard orthography and that the spoken lan-
guage variety of a speaker can be shifted towards standard or
dialect without changing the speaker similarity. This enables,
e.g., the generation of region-specific standard varieties for di-
alect speakers and facilitates smooth interpolations between dif-
ferent dialect varieties. To further validate the authenticity of
the shifted dialect, future work is going to involve a phonetic
analysis of synthesized speech samples. This analysis will in-
volve a comparison between samples of the shifted dialect and
samples of a GT speaker who is native to the dialect.
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